活動時間:2023-12-08 15:00
活動地點:2号學院樓235
主講人:彭躍軍
主講人中文簡介:
彭躍軍現為法國克萊蒙奧佛涅大學特級教授,複旦大學數學系學士和碩士,法國裡昂第一大學博士,曾在法國奧爾良大學和波爾多第一大學擔任講師,在法國布萊茲帕斯卡大學擔任教授。彭躍軍教授的主要研究領域包括一維守恒律方程組的熵解,高維拟線性雙曲型偏微分方程組的光滑解的适定性和漸近分析,等離子體和半導體模型的數學分析和數值模拟,到目前為止,彭躍軍教授已發表專著一部,SCI數學論文90多篇。
活動内容摘要:
We study the approximation of Navier-Stokes equations for a Newtonian fluid by Euler type systems with relaxation. This requires to decompose the second-order derivative terms of the velocity into first-order ones. If the Maxwell laws are concerned, the decompositions lead to approximate systems with scalar, vector and tensor variables. We construct approximate systems without tensor variables by using Hurwitz-Radon matrices, so that the systems can be written in the standard form of symmetrizable hyperbolic systems. For smooth solutions, we prove the convergence of the approximate systems to the Navier-Stokes equations in uniform time intervals. Global convergence in time holds if the initial data are near constant equilibrium states. We also prove the convergence of the approximate systems with tensor variables.
主持人:秦玉明