Limit theorems for functionals of long memory linear processes with infinite variance

活動時間:2024-05-26 13:00

活動地點:2号學院樓235會議室

主講人:徐方軍

主講人中文簡介:

現任華東師範大學統計學院教授。美國康涅狄格大學數學系博士,美國堪薩斯大學數學系Robert Adams訪問助理教授。主要研究概率極限理論,在Annals of Probability, Bernoulli, Stochastic Processes and Their Applications,Journal of Time Series Analysis等概率統計國際一流學術期刊上發表論文近20篇。主持國家自然科學基金青年項目和面上項目各1項,曾獲上海市教學成果獎一等獎(團隊成員)和上海市浦江人才計劃等獎項。

活動内容摘要:

Let $X=\{X_n: n\in\mathbb{N}\}$ be a long memory linear process in which the coefficients are regularly varying and innovations are independent and identically distributed and belong to the domain of attraction of an $\alpha$-stable law with $\alpha\in (0, 2)$. Then, for any integrable and square integrable function $K$ on $\mathbb{R}$, under certain mild conditions, we establish the asymptotic behavior of the partial sum process $${\sum\limits_{n=1}^{[Nt]}[K(X_n)-E K(X_n)]: t\geq 0}$$ as $N$ tends to infinity, where $[Nt]$ is the integer part of $Nt$ for $t\geq 0$. 

主持人:闫理坦


Baidu
sogou