Dynamics of neutral delay differential equation model of a dispersive Kerr cavity

活動時間:2024-09-08 15:55

活動地點:2号學院樓2202報告廳

主講人:Andrei Vladimirov

主講人中文簡介:

A. G. Vladimirov德國魏爾斯特拉斯研究所教授,是光電子器件中非線性動力學研究領域的國際頂尖專家。 已在頂尖的同行評審國際期刊上發表了 114 篇原創性研究成果,其中包括近10篇論文發表在《Phys. Rev. Lett.》,此外還撰寫了四部著作。他的研究得到了歐盟第七框架計劃、德國研究基金會、國際科學基金會、INTAS 和俄羅斯政府聯邦計劃的支持。 他曾在許多著名的國際會議(包括著名的索爾維研讨會)上發表全會演講和特邀演講,并受邀擔任多個著名學術機構的客座教授。他還是許多國際會議組織委員會的成員,曾被授予聖彼得堡國立大學 275 周年紀念榮譽獎章和愛爾蘭科學基金會頒發的 E.T.S. 沃爾頓獎。

A.G. Vladimirov 教授在光電設備數學建模領域的研究成果廣泛應用于科學和技術領域。通過與全球著名機構合作開展的大量工作,他在多個關鍵領域取得了重大進展,其中包括鎖模激光器、光學微腔、耦合激光陣列、用于光學相幹斷層掃描的掃頻激光器,以及光的時間和空間局部結構的動态和相互作用研究。

活動内容摘要:

In this study, we develop a mathematical framework for describing dispersive nonlinear optical cavities using neutral delay differential equations (NDDEs). We investigate a Kerr cavity with coherent injection for the generation of optical frequency combs, deriving a NDDE model that generalizes the Ikeda map and is equivalent to a delay differential-algebraic equations system. In the absence of losses and injection, the model displays conservative behaviour. It is noteworthy that the NDDE model is able to overcome certain limitations of the Lugiato-Lefever equation (LLE), and can be reduced to the LLE in the mean-field limit. It is demonstrated that temporal cavity solitons exist within the neutral DDE framework, both in the vicinity of the LLE limit and beyond it. In the latter scenario, solitons are subject to significant perturbations due to Cherenkov radiation, which ultimately results in their decay. We establish analytical conditions that ensure the stability of the model by preventing spurious instabilities. Furthermore, we extend the NDDE model to incorporate higher-order derivative terms, accounting for higher-order dispersion effects. By introducing spectral filtering, we demonstrate that the model can be converted into a regular DDE. Finally, we discuss the application of the NDDE model to analyze the dynamics of a Kerr cavity under pulsed injection. 

主持人:孫春友


Baidu
sogou